

Smart Irrigation monitoring and forecasting using satellite and hydro–meteorological modelling

SIM water balance models and interaction with satellite data

C. Corbari, A. Ceppi, G. Lombardi, I. Ben Charfi, L. Cerri, M. Feki, N. Paciolla, G. Ravazzani, M. Mancini

FEST-EWB model

J. Dooge(1986) observing internal state variables of hydrologic model (θ) & LST

Corbari & Mancini, 2014 (JHM) Corbari et al., 2014, (HSJ)

Dooge, J.C.I. (1986). Looking for hydrologic laws, Water Resour. Res., 22 (9) 46S-58S.

Consorzio della capitanata (Southern Italy): experimental sites and water distribution network

The Lisimeter Laboratory experience: verifying FEST-EWB

model parameterization

Fully equipped to measure all the process of the hydrological cycle

DIMENSIONS Length, width =1.5 m height =1.0 m Weight = 956 kg without soil Weight about 4700 kg with soil

What happens with vegetation? When to irrigate?

Triggering irrigation according to measured (or <u>forecasted</u>) soil moisture value and plant stress threshold

After 14 days the plant threshold (from FAO) is lowered

Stress threshold is a fucntion of: -soil type -vegetation type -vegetation growth strage -climatology

(http://www.fao.org/)

Basil planted on 12 october (day 286)

17 november (day322)

Irrigation water distribution aqueduct: on demand irrigation

Irrigated crops during the summer season:

-mainly tomatoes

-asparagus -vineyard

-olives trees

$$hi = \frac{Qg}{S \ pomodoro}$$

ANNO	Apertura Stagione	Chiusura Stagione
2014	01/04/2014	31/12/2014
2015	23/03/2015	01/12/2015
2016	01/04/2016	01/12/2016

Irrigation distribution into FEST-EWB hydrological model: which are the cultivated & irrigated areas?

Crops areas and dynamic identification from satellite data for irrigation distribution

Calibration of FEST-EWB model: soil surface parameters calibration pixel by pixel through minimising LST differences

FEST-EWB

Statistics are computed for the same number of pixels (e.g. if MODIS is covered with clouds also FEST-EWB is clouded)

FEST-EWB model can help in creating complete long time series of LST data

Mean error 5 °C Mean error 2.5 °C

18.5

Validation soil moisture and LST of FEST-EWB model

OLITECNICO **FEST-EWB hydrological model estimate and irrigation distribution** I MILANO

When irrigation is applied only in SATELLITE vegetated area with ndvi>0.3, LST from FEST-EWB correcity reproduce the satellite observed LST

Hydrological FEST-EWB model & satellite temperature data for soil moisture

Mean = 37 °C

Mean= 36.5 °C

FEST-EWB model validation at FIELD scale: tomatoes field with sandy soil (2016)

RMSE		(Rn-G) = 1	m (H+LE)	R ²		
SM	0.07					
LST	2.2	LST	1.00	LST	0.80	
LE	139.90	LE	0.84	LE	0.81	
G	46.88	G	0.94	G	0.61	
Rn	54.42	Rn	0.95	Rn	0.94	
Н	50.12	Н	1.10	Н	0.62	

Cumulated evapotranspiration

POLITECNICO DI MILANO

Cumulated sensible heat flux

FEST-EWB model validation at field scale: tomatoes field with clay soil (2016)

(m2]

RMSE		(Rn-G) = 1	m (H+LE)	R ²		
SM	0.06					
LST	2.1	LST	0.9	LST	0.90	
LE	50.1	LE	0.89	LE	0.78	
G	39.4	G	1.1	G	0.61	
Rn	39	Rn	0.91	Rn	0.97	
Н	71.1	Н	0.9	Н	0.62	

Error between ET cum obs and sim= 7%

After calibration RMSE (Rn-G) = m (H+LE)R² SM 0.09 LST 2.3 LST 0.94 LST 0.95 60 LE 1.02 LE 0.7 LE G 0.68 G 0.61 51.1 G 39.4 0.94 0.96 Rn Rn Rn 53.4 0.62 Н 0.89 Н н

Cumulated sensible heat flux

 $26/11/2013\,06/03/2014\,14/06/2014\,22/09/2014\,31/12/2014\,10/04/2015$

Cumulated latent heat flux

^{26/11/2013 06/03/2014 14/06/2014 22/09/2014 31/12/2014 10/04/2015}

POLIMI, 12 June 2019 ARCO TEMPORALE

the SIM strategy allows to reduce the passage over the FC threshold reducing the percolation flux with a saving of irrigation volume

Irrigation intensity for irrigation system:

Drip Sprinkler furrow

The SIM strategy is based on irrigating only when the soil moisture reaches FAO

Stress threshold = FC-p * (FC-WP)

where p is the average fraction of Total Available Soil Water (TAW) that can be depleted from the root zone before moisture stress (Soil water depletion fraction), FC=field capacity, WP= wilting point.

perculation losses

P is function of crop type

Crop	Threshold
Wheat	0,182
Corn	0,19
Sunflower	0,198
Barley	0,182
Рорру	0,166

FAO (Allen et al., 1996)

SIM IRRIGATION STRATEGY: water saving

POLITECNICO

DI MILANO

SIM IRRIGATION STRATEGY : REANALYSIS RESULTS on soil moisture

Tomatoes comparison

ve	d ir	rigat	tion			Fai	rm 2		 SM ob 	served	nalirriga	tions
	0.4								FEST-E	WB SIM i threshold	rrigation Is	S
	0.35				Ť.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Ψa	fc wp			
:	0.3			مالتا بير الأطر								
	8 0.25		<mark>N</mark>	Ninti	() bu	WINDER'S	wie Wilpi	ym w		<u>.</u>		
	0.2				V r			V				
	0.15	16	16	16	16	16	16	16	16	16	16	
		20/04/20	10/05/203	30/05/201	19/06/201	02/20/60	29/07/20	18/08/201	02/00/20	27/09/20	17/10/201	

		Irrigation	Number of	Rainfall
		(mm)	irrigations	cum (mm)
Farm 1	Observed	547.9	27	145
(2016)	SIM	322.3	15	
Farm 2	Observed	646.6	43	150
(2016)	SIM	590	90	
Farm 3	Observed	1000	43	28
(2017)	SIM	850	25	

the SIM strategy allows to reduce the passage over the FC threshold reducing the percolation flux with a saving of irrigation volume

SIM IRRIGATION STRATEGY: REANALYSIS RESULTS on irrigation, evapotranspiration, drainage

Rainfall + Irrigation = Evapotranspiration + Drainage + DW145 + 547= 450 + 320 - 70. (mm)145 + 322= 440 + 110 - 80 (mm) SIM

Rainfall + Irrigation = Evapotranspiration + Drainage + DW 150+ 696 = 260 + 730 - 140 150+ 590 = 260 + 620 - 140 SIM

POLITECNICO DI MILANO

Food and Agriculture Organization

of the United Nations

AQUACROP FAO MODEL as Crop Yeld control:

crop modelling based on daily data with ET computed with kc

Crop yield: -with observed irrigation 120 ton/ha -with SIM strategies 116,3 ton/ha

Steduto, P., Hsiao, T.C., Fereres, E., and Raes, D. 2012. Crop yield response to water. FAO Irrigation and Drainage Paper Nr. 66. Rome, Italy.

FARM 1 - Silty clay soil

SIM IRRIGATION STRATEGY: water indicators at field scale

water use efficiency (WUE = yield/ET) [kg/m³] irrigation water use efficiency (IWUE = yield/irrigation [kg/m³] evaporation deficit =ETP – ET [mm] precipitation deficit = P – ETP [mm] Relative ET deficit = 1-ET/ETP [-] Percolation deficit =((rainfall+irrigation) - percolation) / (rainfall+irrigation) [-] Irrigation efficiency = ET /(rainfall+irrigation) [-]

Cumulated irrigation observed vs SIM

Water fluxes from fest-ewb with observed vs SIM irrigation

Cultivated area from satellite SENTINEL 2 – LANDSAT 7/8

Operative tool for real time irrigation water needs forecast The SIM dashboard WATER INFORMATION SYSTEM

		Ch	iese river a	gricultural	basin: W	ater deficit			
	The following map display ECMWF, BOLAM, MOLC	ys the daily mean wate DCH). In green the area and the crop	r deficit obtained coupli is where soil moisture i o stress threshold, in re	ing a hydrological mod is higher than the field id the areas where soi	del (FEST-EWB c capacity, in yello il moisture is belo	or ETMonitor) with several mete we the areas where soil moisture we the crop stress threshold.	orological models outp e is in between the fiel	outs (WRF, d capacity	
Idrological Model	FEST EWB	v	Emission Date	2018-11-16	#	Forecast time	Present	• Ар	ply
							Reset Map	Histo	gram
	man demo	Palazzoro sull'oglio Chiari Drzinuow	Gussago Ospitaletto Travagilato Castel Mella Birmilo i Manerbio	Nave Gavar Botton Mattha Sezar verdeze er er Abrita Gren Crent	s se cano provide prov	Lago di Gart a Sant Ambrogio di Valgolicelia Bussolengo Beschiera del Gárda Sommacampagna Valeggio sul Villafranca Ca Mincio di Verona Ca	Verona Grezzanà Verona San Martin Buon Albero San Giovanni Lupatoto Zstel d'Azzano	San Mus defi defi	deficit cit, no plant stress cit, plat stress likely
	astelleone		A21	1 E	el Goffredo	Gelto	Isola della Scala Boxol		

Asola

Basin:

water deficit

Basin:

water needs

Control

Field

Farms

Meteorological

Maps

Satellite

Control

Economic

Indicators

manager

2018-11-17 2018-11-18 2018-11-19 Present Temporal Evolution Water deficit surface (%) 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 Min. Cumulated Rainfall (mm) Avg. Max Air mean, maximum and minimum temperature (°C) 10 5 10 10 10 5 5 5 Wind mean, maximum and minimum speed (km/h) PO 2

Soil moisture ground monitoring: 3 years of maize field

Eddy covariance station In a maize field (2016-2017, 2018)

40

35 30 25

precipitazione -12 10

11/07/2017 17/07/2017 29/07/2017 04/08/2017

23/07/2017

05/07/2017

POLIMI, 12 June 2019

23/06/2017 29/06/2017

17/06/2017

05/06/2017

1/06/201

30/05/2017

FEST-EWB calibration using MODIS LST data (2005-2016) at 250 m (downscaled)

at FIELD scale: maize field (2016)

RMSE		(Rn-G)	= m (H+LE)	R ²		
SM	0.07					
LST	2.2	LST	1.00	LST	0.80	
LE	139.90	LE	0.84	LE	0.81	
G	46.88	G	0.94	G	0.61	
Rn	54.42	Rn	0.95	Rn	0.94	
Н	50.12	Н	1.10	Н	0.62	

SIM IRRIGATION STRATEGY: reduction of percolation losses a different irrigation schedule and volume

		Irrigation	Number of	Rainfall
		(mm)	irrigations	cum (mm)
2016	Observed	1426	11	269
	SIM	301	5	
2017	Observed	1480	17	223
	SIM	488	10	
2018	Observed	1750	13	515
	SIM	200	5	

SIM IRRIGATION STRATEGY: REANALYSIS RESULTS on irrigation, evapotranspiration, drainage

 Rainfall + Irrigation = Evapotranspiration + Drainage + DW

 205 + 1450
 = 500 + 870 - 285 (mm)

 205 + 290
 = 295 + 170 - 30 (mm) SIM

Rainfall + Irrigation	n = Evapotranspiration + Drainage + DW
225 + 1470	= <mark>600 + 950 –</mark> 145 (mm)
225 + 500	= 550 + 170 - 5 (mm) SIM

Rainfall + Irrigation	a = Evapotranspiration + Drainage + DW
515 + 1250	= <mark>540 + 1270 –</mark> 45 (mm)
515 + 200	= <mark>540 + 200 - 25 (mm) SIM</mark>

SIM IRRIGATION STRATEGY: water indicators

water use efficiency (WUE = yield/ET) (kg/m3) irrigation water use efficiency (IWUE = yield/irrigation) (kg/m3) evaporation deficit=ETP - ET (mm) precipitation deficit = P - ETP (mm) Relative soil water deficit = 1-(Sm-Wp)/(Fc-Wp) (-) Relative ET deficit = 1-ET / ETP (-) Percolation deficit =((rainfall+irrigation) - percolation) / (rainfall+irrigation) (-) Irrigation efficiency = ET /(rainfall+irrigation) (-)

Crop yield:

2016

-with observed irrigation 8,93 ton/ha -with SIM strategies 8,9 ton/ha **2017**

-with observed irrigation 8,87 ton/ha -with SIM strategies 8,67 ton/ha

Meteorological data and LST in continuous from 2013 to 2017

HETEROGENEUS AREA: During the campaign, a large part of the crops were already harvested with the exception of maize, vineyard, sunflower, orchards and forest nursery (1500 ha)

The SIM operative dashboard

Airborne data: AHS (3m spatial resolution) VIS + NIR + TIR

Intensive field campaigns: 2005, 2009, 2011, 2012: (REFLEX) - EUFAR (Timmermans et al. 2014)

<text><text><text>

Irrigation scheme: on demand irrigation with central pivot sprinkler

210

210

P3 – corn from May to September 2014: SIM Strategy

Case study: Aa en Maas – Raam district (The Netherlands)

VARIABLE

Irrigation

MAX

(mm/d) MIN (mm/d)

AV (mm/d)

Total Vol

(Mmc/y) Area of

Raam

2011

6,00

2012

2.8

0.0

0.2

2,87

16%

2016

Irrigation is made both from surface and groundwater (75 %)

Area = 420 km2 Agricultural area= 40 % Irrigated area= 25 %

2015

10.3

0.0

0.7

10,74

26%

2014

8.3

0.0

0.2

2,60

18%

Fig 3.60 –Irrigation network in Raam district

2013

3.9

0.0

0.5

7,58

29%

AQUIFER DEPTH with MONITORING WELLS chosen for groundwater level analysis

FEST-EWB is calibrated against MODIS LST images

Heihe River (黑 河) basin, PR China

120

240

480

720

POLIMI, 12 June 2019

< -5
-4.9999 - 0
0.0001 - 5
5.0001 - 10
10.0001 - 15
15.0001 - 20
20.0001 - 25
25.0001 - 30
30.0001 - 35
35.0001 - 40
40.0001 - 45
> 45

Land cover classification

Land Surface Temperature [°C]

	Calibration statistics (FEST v. MODIS)			
Parameter configuration s	Avg. RMSE	Avg. RMSE/σ	Average Bias (FEST-MODIS)	Avg. Nash- Sutcliffe Efficiency (NSE)
Initial	7.7°C	2.96	+2.88°C	+0.067
Final	8.1°C	3 01	-2 69°C	-0 039

FEST-EWB v. Etmonitor: Average differences

Thanks!

Marco Mancini <u>marco.mancini@polimi.it</u> Chiara Corbari Giovanni Ravazzani Alessandro Ceppi G. Lombardi, L. Cerri, N. Paciolla, M. Feki, I. Ben Charfi